与求交集的方法总结
原文地址: https://www.cnblogs.com/aspirant/p/10012840.html
一、有序集合求交集的方法有
a)二重for循环法,时间复杂度O(n*n)
b)拉链法,时间复杂度O(n)
c)水平分桶,多线程并行
d)bitmap,大大提高运算并行度,时间复杂度O(n)
e)跳表,时间复杂度为O(log(n))
以下是方法的具体介绍:
方案一:for * for,土办法,时间复杂度O(n*n)
每个搜索词命中的网页是很多的,O(n*n)的复杂度是明显不能接受的。倒排索引是在创建之初可以进行排序预处理,问题转化成两个有序的list求交集,就方便多了。
方案二:有序list求交集,拉链法
有序集合1{1,3,5,7,8,9}
有序集合2{2,3,4,5,6,7}
两个指针指向首元素,比较元素的大小:
(1)如果相同,放入结果集,随意移动一个指针
(2)否则,移动值较小的一个指针,直到队尾
这种方法的好处是:
(1)集合中的元素最多被比较一次,时间复杂度为O(n)
(2)多个有序集合可以同时进行,这适用于多个分词的item求url_id交集
这个方法就像一条拉链的两边齿轮,一一比对就像拉链,故称为拉链法
方案三:分桶并行优化
数据量大时,url_id分桶水平切分+并行运算是一种常见的优化方法,如果能将list1和list2分成若干个桶区间,每个区间利用多线程并行求交集,各个线程结果集的并集,作为最终的结果集,能够大大的减少执行时间。
举例:
有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}
有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70}
求交集,先进行分桶拆分:
桶1的范围为[1, 9]
桶2的范围为[10, 100]
桶3的范围为[101, max_int]
于是:
集合1就拆分成
集合a{1,3,5,7,8,9}
集合b{10,30,50,70,80,90}
集合c{}
集合2就拆分成
集合d{2,3,4,5,6,7}
集合e{20,30,40,50,60,70}
集合e{}
每个桶内的数据量大大降低了,并且每个桶内没有重复元素,可以利用多线程并行计算:
桶1内的集合a和集合d的交集是x{3,5,7}
桶2内的集合b和集合e的交集是y{30, 50, 70}
桶3内的集合c和集合d的交集是z{}
最终,集合1和集合2的交集,是x与y与z的并集,即集合{3,5,7,30,50,70}
方案四:bitmap再次优化
数据进行了水平分桶拆分之后,每个桶内的数据一定处于一个范围之内,如果集合符合这个特点,就可以使用bitmap来表示集合:
如上图,假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}
水平分桶,bitmap优化之后,能极大提高求交集的效率,但时间复杂度仍旧是O(n)
但bitmap需要大量连续空间,占用内存较大
方案五:跳表skiplist
有序链表集合求交集,跳表是最常用的数据结构,它可以将有序集合求交集的复�
- 原文作者:知识铺
- 原文链接:https://geek.zshipu.com/post/%E4%BA%92%E8%81%94%E7%BD%91/%E4%B8%8E%E6%B1%82%E4%BA%A4%E9%9B%86%E7%9A%84%E6%96%B9%E6%B3%95%E6%80%BB%E7%BB%93/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com