滴滴技术小白也能懂的因果推断科普
桔妹导读: 在网约车行业中,有很多场景中都有着因果推断的相关应用,不仅仅是算法同学等在因果建模时运用到相关知识,很多业务同学在做相关决策时也经常用到。因此采用日常生活中常见的例子以及行业中的常见问题,对因果推断方向进行科普。
1. 因果推断科普介绍
本文大概从两个方面展开介绍:
- 因果性和相关性的定义以及区别。结合日常和业务上的例子有更直观的感受
- 因果推断的常用方法介绍,以及在不同场景下如何应用
为什么需要研究因果性?在花小猪的很多场景中,我们是希望能够做决策,来得到我们想要的结果。比如通过对哪些乘客发券,对哪些司机发任务来提高平台的呼叫和tsh。如果只知道相关关系而不知道因果关系,很多场景下达不到我们想要的效果。下面举几个比较典型的混淆因果和相关关系的case来说明这几个问题。
这就是误用相关性的第一种CASE——因果颠倒。医院的例子中:院长认为:穿病号服会导致用户患重病,脱病号服会让用户治愈业务中的例子:小明同学认为,投入B补会降低城市成交率,降低B补会提高城市成交率。
- 实际中的逻辑,其实大家很容易想到:是因果颠倒的。
- 因为用户患重病,所以需要穿病号服住院治疗,因为用户治愈恢复健康,所以脱去病号服办理出院手续。
- 城市供不应求,成交率不好,所以需要追加B补 拉动大盘的tsh。城市供大于求,成交率很好,无需要投入更多的B补。
生活中大家会遇到一些很神奇的事情。
- 比如有关注体育比赛的,是不是有这种感觉:每当我熬夜观看主队比赛的时候,主队就经常拉胯输球。经常看完后会骂:再看XX比赛我就是狗。有时候晚上睡过了错过比赛,醒来之后就是一场大胜。这时候作为一个合格的球迷:就会想到,能否拒绝观看主队比赛,提高主队胜率。
这其实是第二类错误,误用小样本巧合,当做因果性去做决策。事实上是:我今年没看NBA季后赛,还是湖人总冠军。之所以造成这样的感觉是因为:以比赛来说,我们喜欢的明星或者球队,会有代入感。我们的爱豆 那就是最好看的,我们的支持的球队那就是最强的。当带有这种心理,且熬夜起来看球,输球的时候,会放大这种输球的体验,让我们印象深刻,会记住这种时刻。
这是误用相关性的第三类错误。老板认为:冰淇淋销量是啤酒销量的因,通过促销冰淇淋来带动高利润的酒水。实际上的因果关系:因为夏天来了,天气变热了,冰淇淋的销量会大幅提升。同样,天气变热,喝酒撸串的人也变多了,所以啤酒也会销量提升。冬天来临时,老板低价冰淇淋卖破产了,啤酒销量也不见得能提升多少。这就是第三类错误:共同场外因素作用。
前面的三种类型一般会比较简单点,接下来的case是业务中比较常见的,也容易犯的错误。
- 在北京地区发现,海淀区的孩子们普遍成绩较好,成绩比石景山区能高出100分呢?小明的家长想:古有孟母三迁,现
- 原文作者:知识铺
- 原文链接:https://geek.zshipu.com/post/%E4%BA%92%E8%81%94%E7%BD%91/%E6%BB%B4%E6%BB%B4%E6%8A%80%E6%9C%AF%E5%B0%8F%E7%99%BD%E4%B9%9F%E8%83%BD%E6%87%82%E7%9A%84%E5%9B%A0%E6%9E%9C%E6%8E%A8%E6%96%AD%E7%A7%91%E6%99%AE/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com