推荐系统遇上深度学习五模型理论和实践
原文发布于微信公众号 - 小小挖掘机(wAIsjwj)
原文发表时间:2018.04.22 16:14
1、原理
Deep&Cross Network模型我们下面将简称DCN模型:
一个DCN模型从嵌入和堆积层开始,接着是一个交叉网络和一个与之平行的深度网络,之后是最后的组合层,它结合了两个网络的输出。完整的网络模型如图:
嵌入和堆叠层
我们考虑具有离散和连续特征的输入数据。在网络规模推荐系统中,如CTR预测,输入主要是分类特征,如“country=usa”。这些特征通常是编码为独热向量如“[ 0,1,0 ]”;然而,这往往导致过度的高维特征空间大的词汇。
为了减少维数,我们采用嵌入过程将这些离散特征转换成实数值的稠密向量(通常称为嵌入向量):
然后,我们将嵌入向量与连续特征向量叠加起来形成一个向量:
拼接起来的向量X0将作为我们Cross Network和Deep Network的输入
Cross Network
交叉网络的核心思想是以有效的方式应用显式特征交叉。交叉网络由交叉层组成,每个层具有以下公式:
一个交叉层的可视化如图所示:
可以看到,交叉网络的特殊结构使交叉特征的程度随着层深度的增加而增大。多项式的最高程度(就输入X0而言)为L层交叉网络L + 1。如果用Lc表示交叉层数,d表示输入维度。然后,参数的数量参与跨网络参数为:d * Lc * 2 (w和b)
交叉网络的少数参数限制了模型容量。为了捕捉高度非线性的相互作用,模型并行地引入了一个深度网络。
Deep Network
深度网络就是一个全连接的前馈神经网络,每个深度层具有如下公式:
Combination Layer
链接层将两个并行网络的输出连接起来,经过一层全链接层得到输出:
如果采用的是对数损失函数,那么损失函数形式如下:
总结
DCN能够有效地捕获有限度的有效特征的相互作用,学会高度非线性的相互作用,不需要人工特征工程或遍历搜索,并具有较低的计算成本。
论文的主要贡献包括:
1)提出了一种新的交叉网络,在每个层上明确地应用特征交叉,有效地学习有界度的预测交叉特征,并且不需要手工特征工程或穷举搜索。
2)跨网络简单而有效。通过设计,各层的多项式级数最高,并由层深度决定。网络由所有的交叉项组成,它们的系数各不相同。
3)跨网络内存高效,易于实现。
4)实验结果表明,交叉网络(DCN)在LogLoss上与DNN相比少了近一个量级的参数量。
这个是从论文中翻译过来的,哈哈。
2、实现解析
本文的代码根据之前DeepFM的代码进行改进,我们只介绍模型的实现部分,其他数据处理的细节大家可以参考我的github上的代码:
https://github.com/princewen/tensorflow_practice/tree/master/Basic-DCN-Demo
数据下载地址: https://www.kaggle.com/c/porto-seguro-safe-driver-prediction
不去下载也没关系,我在github上保留了几千行的数据用作模型测试。
模型输入
模型输入
模型的输入主要有下面几个部分:
self.feat_index = tf.placeholder(tf.int32,
shape=[None,None],
name='feat_index')
self.feat_value = tf.placeholder(tf.float32,
shape=[None,None],
name='feat_value')
self.numeric_value = tf.placeholder(tf.float32,[None,None],name='num_value')
self.label = tf.placeholder(tf.float32,shape=[None,1],name='label')
self.dropout_keep_deep = tf.placeholder(tf.float32,shape=[None],name='dropout_deep_deep')
可以看到,这里与DeepFM相比,一个明显的变化是将离散特征和连续特征分开,连续特征不在转换成embedding进行输入,所以我们的输入共有五部分。
feat_index 是离散特征的一个序号,主要用于通过embedding_lookup选择我们的embedding。 feat_value 是对应离散特征的特征值。 numeric_value 是我们的连续特征值。 label 是实际值。还定义了两个dropout来防止过拟合。
权重构建
权重主要包含四部分,embedding层的权重,cross network中的权重,deep network中的权重以及最后链接层的权重,我们使用一个字典来表示:
def _initialize_weights(self):
weights = dict()
#embeddings
weights['feature_embeddings'] = tf.Variable(
tf.random_normal([self.cate_feature_size,self.embedding_size],0.0,0.01),
name='feature_embeddings')
weights['feature_bias'] = tf.Variable(tf.random_normal([self.cate_feature_size,1],0.0,1.0),name='feature_bias')
#deep layers
num_layer = len(self.deep_layers)
glorot = np.sqrt(2.0/(self.total_size + self.deep_layers[0]))
weights['deep_layer_0'] = tf.Variable(
np.random.normal(loc=0,scale=glorot,size=(self.total_size,self.deep_layers[0])),dtype=np.float32
)
weights['deep_bias_0'] = tf.Variable(
np.random.normal(loc=0,scale=glorot,size=(1,self.deep_layers[0])),dtype=np.float32
)
for i in range(1,num_layer):
glorot = np.sqrt(2.0 / (self.deep_layers[i - 1] + self.deep_layers[I]))
weights["deep_layer_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.deep_layers[i - 1], self.deep_layers[i])),
dtype=np.float32) # layers[i-1] * layers[I]
weights["deep_bias_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(1, self.deep_layers[i])),
dtype=np.float32) # 1 * layer[I]
for i in range(self.cross_layer_num):
weights["cross_layer_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.total_size,1)),
dtype=np.float32)
weights["cross_bias_%d" % i] = tf.Variable(
np.random.normal(loc=0, scale=glorot, size=(self.total_size,1)),
dtype=np.float32) # 1 * layer[I]
# final concat projection layer
input_size = self.total_size + self.deep_layers[-1]
glorot = np.sqrt(2.0/(input_size + 1))
weights['concat_projection'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(input_size,1)),dtype=np.float32)
weights['concat_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32)
return weights
计算网络输入
这一块我们要计算两个并行网络的输入X0,我们需要将离散特征转换成embedding,同时拼接上连续特征:
# model
self.embeddings = tf.nn.embedding_lookup(self.weights['feature_embeddings'],self.feat_index) # N * F * K
feat_value = tf.reshape(self.feat_value,shape=[-1,self.field_size,1])
self.embeddings = tf.multiply(self.embeddings,feat_value)
self.x0 = tf.concat([self.numeric_value,
tf.reshape(self.embeddings,shape=[-1,self.field_size * self.embedding_size])]
,axis=1)
Cross Network
根据论文中的计算公式,一步步计算得到cross network的输出:
# cross_part
self._x0 = tf
- 原文作者:知识铺
- 原文链接:https://geek.zshipu.com/post/%E4%BA%92%E8%81%94%E7%BD%91/%E6%8E%A8%E8%8D%90%E7%B3%BB%E7%BB%9F%E9%81%87%E4%B8%8A%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E4%BA%94%E6%A8%A1%E5%9E%8B%E7%90%86%E8%AE%BA%E5%92%8C%E5%AE%9E%E8%B7%B5/
- 版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 4.0 国际许可协议进行许可,非商业转载请注明出处(作者,原文链接),商业转载请联系作者获得授权。
- 免责声明:本页面内容均来源于站内编辑发布,部分信息来源互联网,并不意味着本站赞同其观点或者证实其内容的真实性,如涉及版权等问题,请立即联系客服进行更改或删除,保证您的合法权益。转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。也可以邮件至 sblig@126.com